Research Published on 26 févr. 2024

The role of a homeostatic switch which causes the accumulation of glycerol-3-phosphate and phosphoethanolamine, and triggers senescence by reorgan.

The role of a homeostatic switch which causes the accumulation of glycerol-3-phosphate and phosphoethanolamine, and triggers senescence by reorgan.

Oliver Bischof and José Américo Freitas are co-authors of this open access article. 

The EUR LIVE teachers published this promising study on diseases linked to aging in the February 19, 2024 issue of the journal Nature Metabolism:

Access here to the journal in OPEN ACCESS

Abstract:

“Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme.Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.

Update 4 août 2022

Share: